我们提出了跨模式的细心连接,这是一种从可穿戴数据中学习的新型动态和有效技术。我们的解决方案可以集成到管道的任何阶段,即在任何卷积层或块之后,以在负责处理每种模式的单个流之间创建中间连接。此外,我们的方法受益于两个属性。首先,它可以单向共享信息(从一种方式到另一种方式)或双向分别。其次,可以同时将其集成到多个阶段中,以进一步允许以几个接触点交换网络梯度。我们对三个公共多模式可穿戴数据集(Wesad,Swell-KW和案例)进行了广泛的实验,并证明我们的方法可以有效地调节不同模式之间的信息,以学习更好的表示。我们的实验进一步表明,一旦整合到基于CNN的多模式溶液(2、3或4模态)中,我们的方法就会导致卓越或竞争性的性能,而不是最先进的表现,并且表现优于各种基线模式和经典的多模式方法。
translated by 谷歌翻译
In this paper, we present a novel control architecture for the online adaptation of bipedal locomotion on inclined obstacles. In particular, we introduce a novel, cost-effective, and versatile foot sensor to detect the proximity of the robot's feet to the ground (bump sensor). By employing this sensor, feedback controllers are implemented to reduce the impact forces during the transition of the swing to stance phase or steeping on inclined unseen obstacles. Compared to conventional sensors based on contact reaction force, this sensor detects the distance to the ground or obstacles before the foot touches the obstacle and therefore provides predictive information to anticipate the obstacles. The controller of the proposed bump sensor interacts with another admittance controller to adjust leg length. The walking experiments show successful locomotion on the unseen inclined obstacle without reducing the locomotion speed with a slope angle of 12. Foot position error causes a hard impact with the ground as a consequence of accumulative error caused by links and connections' deflection (which is manufactured by university tools). The proposed framework drastically reduces the feet' impact with the ground.
translated by 谷歌翻译
Designing a local planner to control tractor-trailer vehicles in forward and backward maneuvering is a challenging control problem in the research community of autonomous driving systems. Considering a critical situation in the stability of tractor-trailer systems, a practical and novel approach is presented to design a non-linear MPC(NMPC) local planner for tractor-trailer autonomous vehicles in both forward and backward maneuvering. The tractor velocity and steering angle are considered to be control variables. The proposed NMPC local planner is designed to handle jackknife situations, avoiding multiple static obstacles, and path following in both forward and backward maneuvering. The challenges mentioned above are converted into a constrained problem that can be handled simultaneously by the proposed NMPC local planner. The direct multiple shooting approach is used to convert the optimal control problem(OCP) into a non-linear programming problem(NLP) that IPOPT solvers can solve in CasADi. The controller performance is evaluated through different backup and forward maneuvering scenarios in the Gazebo simulation environment in real-time. It achieves asymptotic stability in avoiding static obstacles and accurate tracking performance while respecting path constraints. Finally, the proposed NMPC local planner is integrated with an open-source autonomous driving software stack called AutowareAi.
translated by 谷歌翻译
Dialogue models are able to generate coherent and fluent responses, but they can still be challenging to control and may produce non-engaging, unsafe results. This unpredictability diminishes user trust and can hinder the use of the models in the real world. To address this, we introduce DialGuide, a novel framework for controlling dialogue model behavior using natural language rules, or guidelines. These guidelines provide information about the context they are applicable to and what should be included in the response, allowing the models to generate responses that are more closely aligned with the developer's expectations and intent. We evaluate DialGuide on three tasks in open-domain dialogue response generation: guideline selection, response generation, and response entailment verification. Our dataset contains 10,737 positive and 15,467 negative dialogue context-response-guideline triplets across two domains - chit-chat and safety. We provide baseline models for the tasks and benchmark their performance. We also demonstrate that DialGuide is effective in the dialogue safety domain, producing safe and engaging responses that follow developer guidelines.
translated by 谷歌翻译
Graph neural networks (GNNs) have been utilized for various natural language processing (NLP) tasks lately. The ability to encode corpus-wide features in graph representation made GNN models popular in various tasks such as document classification. One major shortcoming of such models is that they mainly work on homogeneous graphs, while representing text datasets as graphs requires several node types which leads to a heterogeneous schema. In this paper, we propose a transductive hybrid approach composed of an unsupervised node representation learning model followed by a node classification/edge prediction model. The proposed model is capable of processing heterogeneous graphs to produce unified node embeddings which are then utilized for node classification or link prediction as the downstream task. The proposed model is developed to classify stock market technical analysis reports, which to our knowledge is the first work in this domain. Experiments, which are carried away using a constructed dataset, demonstrate the ability of the model in embedding extraction and the downstream tasks.
translated by 谷歌翻译
In this paper we look into the conjecture of Entezari et al. (2021) which states that if the permutation invariance of neural networks is taken into account, then there is likely no loss barrier to the linear interpolation between SGD solutions. First, we observe that neuron alignment methods alone are insufficient to establish low-barrier linear connectivity between SGD solutions due to a phenomenon we call variance collapse: interpolated deep networks suffer a collapse in the variance of their activations, causing poor performance. Next, we propose REPAIR (REnormalizing Permuted Activations for Interpolation Repair) which mitigates variance collapse by rescaling the preactivations of such interpolated networks. We explore the interaction between our method and the choice of normalization layer, network width, and depth, and demonstrate that using REPAIR on top of neuron alignment methods leads to 60%-100% relative barrier reduction across a wide variety of architecture families and tasks. In particular, we report a 74% barrier reduction for ResNet50 on ImageNet and 90% barrier reduction for ResNet18 on CIFAR10.
translated by 谷歌翻译
高维计算(HDC)是用于数据表示和学习的范式,起源于计算神经科学。HDC将数据表示为高维,低精度向量,可用于学习或召回等各种信息处理任务。高维空间的映射是HDC中的一个基本问题,现有方法在输入数据本身是高维时会遇到可伸缩性问题。在这项工作中,我们探索了一个基于哈希的流媒体编码技术。我们正式表明,这些方法在学习应用程序的性能方面具有可比的保证,同时比现有替代方案更有效。我们在一个流行的高维分类问题上对这些结果进行了实验验证,并表明我们的方法很容易扩展到非常大的数据集。
translated by 谷歌翻译
近年来,深度学习的显着进步主要是由于规模的改进而驱动,在该规模上,更大的模型在较大的数据集上进行了更长的时间表的培训。为了从经验上预测规模的好处,我们主张基于外推损失的更严格的方法,而不是报告最合适的(插值)参数。然后,我们提出了一种从学习曲线可靠地估算缩放定律参数的配方。我们证明,除了来自大型基础评估基准的任务外,除了大型域中,包括图像分类,神经机器翻译(NMT)和语言建模,包括图像分类,神经机器翻译(NMT)和语言建模,它比以前的方法更准确地推断出更准确的方法。最后,我们发布了一个由90个评估任务组成的基准数据集,以促进该领域的研究。
translated by 谷歌翻译
最近的AI算法是黑框模型,其决策难以解释。可解释的AI(XAI)试图通过向客户解释其AI决定,例如决定拒绝贷款申请,以解决缺乏AI的解释性和信任。普遍的智慧是,通过规定完全透明的XAI来调节AI会导致更大的社会福利。本文通过游戏理论模型对一个最大化社会福利的决策制定者,在最大化利润最大化的双重垄断竞争和异性消费者的政策制定者中挑战了这一概念。结果表明XAI调节可能是多余的。实际上,要求完全透明的XAI可能会使公司和客户变得更糟。这揭示了最大化福利和获得可解释的AI输出之间的权衡。我们还讨论了对政策制定者和公司的管理意义。
translated by 谷歌翻译
在语言处理的神经方法上的最新进展引发了人们对建立智能开放域聊天机器人的兴趣的复兴。但是,即使是最先进的神经聊天机器人也无法在对话框中每个回合产生令人满意的响应。一个实用的解决方案是为相同上下文生成多个响应候选者,然后执行响应排名/选择以确定哪个候选者是最好的。先前的响应选择中的工作通常使用从现有对话框形成的合成数据来训练响应排名者,通过使用地面真理响应作为单个适当的响应并通过随机选择或使用对抗方法来构建不适当的响应。在这项工作中,我们策划了一个数据集,其中为适当的(正)和不适当(负)手动注释了为相同对话框上下文产生的多个响应发生器的响应。我们认为,这样的培训数据可以更好地匹配实际的用例示例,从而使模型能够有效地对响应进行排名。有了这个新数据集,我们对最先进的响应选择方法进行了系统的评估,并证明,使用多个积极候选者和使用手动验证的硬性负面候选者的两种策略都可以与使用相比,可以带来重大的绩效提高对抗性训练数据,例如,召回@1分别增加了3%和13%。
translated by 谷歌翻译